并联电容器
Capacitors in Parallel
当电容器并联连接时,其两个端子都分别与另一电容器的对应端子相连。
并联连接的所有电容器两端所加的电压 (V_c) 相同。因此,并联电容器具有共同的电压,其表达式为:
在下图电路中,电容 C_1、C_2 和 C_3 均作为并联支路连接在 A 点和 B 点之间,如下所示。
当电容器并联连接时,电路中的总电容或等效电容 C_T 等于所有单个电容器电容值之和。其原因在于电容 C_1 的上极板连接到 C_2 的上极板,后者又连接到 C_3 的上极板,以此类推。
同理,所有电容器的下极板也相互连接。这样就相当于三组极板相互贴合,形成了一块更大的单一极板,从而增大了有效极板面积(单位:\mathrm{m}^2)。
由于电容与极板面积成正比(C = \varepsilon \dfrac{A}{d}),并联组合的电容值也随之增大。因此,并联电容器的等效电容可表示为各电容器电容之和。你可能已经注意到,并联电容的总电容计算方式与串联电阻的总电阻计算方式相同。
流经每个电容器的电流与加在其上的电压有关。对上述电路应用基尔霍夫电流定律(KCL),我们得到:
还可以改写成:
那么我们可以将电路的总电容 C_T 定义为所有单个电容值之和,从而得到并联电容器的一般方程:
并联电容器方程
Parallel Capacitors Equation
当将电容器并联相加时,必须先将它们全部换算到相同的电容单位(例如 \mu\mathrm{F}、nF 或 pF)。此外,我们可以看到流过总电容值 C_T 的电流与总电路电流 i_T 相同。
我们也可以使用电荷公式
根据电容器极板上的电荷来定义并联电路的总电容。所有电容器极板上存储的总电荷 Q_T 等于各电容器存储电荷之和,因此,
由于并联电容器的电压 V 相同,我们可以将上述方程的两边同时除以电压,仅剩下电容值;通过简单地将各个电容值相加即可得到总电容 C_T。
此外,该方程与任何支路中并联电容器的数量无关,因此对于任意数量的 N 个并联电容器都可以使用此公式,因为这只是一个简单的加法过程。
教程示例 1
因此,从上述示例中取三电容值,可计算电路等效总电容 C_T 为:
一个要点需铭记:在并联电容电路中,任何两个或以上电容器并联时的总电容 C_T 必然大于组中最大电容的数值,因为我们是将各电容值相加。因此在上例中, C_T=0.6\,\mu\mathrm{F},而并联组合中最大的单个电容仅为 0.3\,\mu\mathrm{F}。
当连接四个、五个、六个或更多电容器时,电路总电容 C_T 仍为所有单个电容之和;如我们所知,并联电路的总电容始终大于其中最大电容的值。
这是因为我们有效地增加了极板的总表面积。若使用两个相同电容器,则极板面积翻倍,组合电容也随之翻倍;以此类推。
教程示例 2
计算以下电容器并联时的总电容(单位:微法拉, \mu\mathrm{F}):
a) 两个各为 47\,\mathrm{nF} 的电容器
b) 一个 470\,\mathrm{nF} 的电容器与一个 1\,\mu\mathrm{F} 的电容器并联
因此
由此可见,含有两个或更多并联电容器的电路的总电容 C_T 等于各电容值之和,这是由于有效极板面积增加所致。
在下一个关于电容器的教程中,我们将探讨电容器的串联连接以及该组合对电路总电容、电压和电流的影响。
附录
单词表
声明
本文翻译自 electronics-tutorials
本文仅供学习,禁止用于任何的商业用途。